Skip to main content

AUTONOMOUS CAR

AUTONOMOUS CAR

An autonomous car is a vehicle capable of sensing its environment and operating without human involvement. A human passenger is not required to take control of the vehicle at any time, nor is a human passenger required to be present in the vehicle at all. An autonomous car can go anywhere traditional cargoes and do everything that an experienced human driver does.

The Society of Automotive Engineers (SAE) currently defines 6 levels of driving automation ranging from Level 0 (fully manual) to Level 5 (fully autonomous).

How do autonomous cars work?

Autonomous cars rely on sensors, actuators, complex algorithms, machine learning systems, and powerful processors to execute software.

Autonomous cars create and maintain a map of their surroundings based on a variety of sensors situated in different parts of the vehicle. Radar sensors monitor the position of nearby vehicles. Video cameras detect traffic lights, read road signs, track other vehicles, and look for pedestrians. Lidar (light detection and ranging) sensors bounce pulses of light off the car’s surroundings to measure distances, detect road edges, and identify lane markings. Ultrasonic sensors in the wheels detect curbs and other vehicles when parking.


 

Sophisticated software then processes all this sensory input, plots a path, and sends instructions to the car’s actuators, which control acceleration, braking, and steering. Hard-coded rules, obstacle avoidance algorithms, predictive modeling, and object recognition help the software follow traffic rules and navigate obstacles.

Challenges with autonomous cars?

Fully autonomous (Level 5) cars are undergoing testing in several pockets of the world, but none are yet available to the general public. We’re still years away from that. The challenges range from the technological and legislative to the environmental and philosophical. Here are just some of the unknowns.

Lidar and Radar

Lidar is expensive and is still trying to strike the right balance between range and resolution. If multiple autonomous cars were to drive on the same road, would their lidar signals interfere with one another? And if multiple radio frequencies are available, will the frequency range be enough to support the mass production of autonomous cars?

Weather Conditions

What happens when an autonomous car drives in heavy precipitation? If there’s a layer of snow on the road, lane dividers disappear. How will the cameras and sensors track lane markings if the markings are obscured by water, oil, ice, or debris?

Traffic Conditions and Laws

Will autonomous cars have trouble in tunnels or on bridges? How will they do in bumper-to-bumper traffic? Will autonomous cars be relegated to a specific lane? Will they be granted carpool lane access? And what about the fleet of legacy cars still sharing the roadways for the next 20 or 30 years?

State vs. Federal Regulation

The regulatory process in the U.S. has recently shifted from federal guidance to state-by-state mandates for autonomous cars. Some states have even proposed a per-mile tax on autonomous vehicles to prevent the rise of “zombie cars” driving around without passengers. Lawmakers have also written bills proposing that all autonomous cars must be zero-emission vehicles and have a panic button installed. But are the laws going to be different from state to state? Will you be able to cross state lines with an autonomous car?

Accident Liability

Who is liable for accidents caused by an autonomous car? The manufacturer? The human passenger? The latest blueprints suggest that a fully autonomous Level 5 car will not have a dashboard or a steering wheel, so a human passenger would not even have the option to take control of the vehicle in an emergency.

Artificial vs. Emotional Intelligence

Human drivers rely on subtle cues and non-verbal communication—like making eye contact with pedestrians or reading the facial expressions and body language of other drivers—to make split-second judgment calls and predict behaviors. Will autonomous cars be able to replicate this connection? Will they have the same life-saving instincts as human drivers?

What are the benefits of autonomous cars?

The scenarios for convenience and quality-of-life improvements are limitless. The elderly and the physically disabled would have independence. If your kids were at summer camp and forgot their bathing suits and toothbrushes, the car could bring them the missing items. You could even send your dog to a veterinary appointment.

But the real promise of autonomous cars is the potential for dramatically lowering CO2 emissions. In a recent study, experts identified three trends that, if adopted concurrently, would unleash the full potential of autonomous cars: vehicle automation, vehicle electrification, and ridesharing. By 2050, these “three revolutions in urban transportation” could:

 · Reduce traffic congestion (30% fewer vehicles on the road)

· Cut transportation costs by 40% (in terms of vehicles, fuel, and infrastructure)

· Improve walkability and livability

· Free up parking lots for other uses (schools, parks, community centers)

· Reduce urban CO2 emissions by 80% worldwide

 

 








Comments

Popular posts from this blog

ROBOTIC PROCESS AUTOMATION

                             ROBOTIC PROCESS AUTOMATION: Robotic process automation (RPA), also known as software robotics, uses automation technology to simulate back-office functions performed by human employees, such as extracting data, filling out forms, moving files, etc. To integrate and carry out repetitive operations between enterprise and productivity applications, it mixes APIs and user interface (UI) interactions.   WORKING: RPA is not a physical robot but software running on physical and virtual machines. RPA is used when we have to handle repetitive tasks like sometimes, we fill in the same information at different places. It is operated by running a set of workflow tasks. It gives some instructions about what to do and how to do it at different stages of the workflow. Once the task is requested, the software runs and completes the whole task accordingly as many times as we want. If there is any incorrect data in bots, the software will send a request for correct

Unhackable Internet

  W hy it matters?   The internet is increasingly vulnerable to hacking; a quantum one would be unhackable. Quantum Computing    A quantum internet could be used to send unhackable messages, improve the accuracy of GPS, and enable cloud-based quantum computing. For more than twenty years, dreams of creating such a the quantum network have remained out of reach in large part because of the difficulty to send quantum signals across large distances without loss.   Now, Harvard and MIT researchers have found a way to correct for signal loss with a prototype quantum node that can catch, store and entangle bits of quantum information. The research is the missing link towards a practical quantum internet and a major step forward in the development of long-distance quantum networks.   The U.S Department of Energy (DoE) explains how a quantum link will make it happen through two quantum phenomenon: the first is quantum entanglement, where two-particle can become so inextricably li

Pegasus Spyware: Flying Through The Air

 Hundreds of millions of people can't imagine life without their smartphones. Almost every aspect of their daily lives, from the most mundane to the most intimate, is within easy reach and hearing distance of their smartphones. Only few people realize that their phones may be used as surveillance devices, with someone hundreds of miles away secretly extracting their messages, photographs, and location while also activating their microphone and recording them in real time. Such capabilities are present in Pegasus, a spyware produced by NSO Group, an Israeli maker of mass surveillance weapons. What is Pegasus? Pegasus is a hacking software – or spyware – that is developed, marketed and licensed to governments around the world by the Israeli company NSO Group. It has the capability to infect billions of phones using either iOS or Android operating systems. The spyware is named after Pegasus, the white winged horse from Greek mythology. It is named so because it "flies through the