Skip to main content

World’s Smallest Atom - Memory Unit

In development to two-year-old research, the scientists from the University of Texas at Austin in the US also found the physics have improved upon the physics that enables dense memory storage capabilities in tiny chips. With this, the researchers claim to have made the world’s smallest memory device yet. Researchers have created the smallest memory device yet, an advance that may lead to faster, smaller, and more energy-efficient electronic chips for consumer electronics and brain-inspired computing. Smaller processors enable manufacturers to make more compact computers and phones. In the research, the scientists reduced the size of what was then the thinnest memory storage device. 

Published recently in the journal Nature Nanotechnology, the research mentions the development of a memory storage device with a cross-section area of just a single square nanometer. Getting a handle on the physics that pack dense memory storage capability into these devices enabled the ability to make them much smaller.

 Defects, or holes in the material, provide the key to unlocking the high-density memory storage capability. “When a single additional metal atom goes into that nanoscale hole and fills it, it confers some of its conductivity into the material, and this leads to a change or memory effect,” explained Deji Akinwande, a co-author of the study.

 In the case of chips, the importance of reducing their size lies in the fact that it allows them to generate greater efficiency, functionality and speed, while requiring less energy demand, becoming more environmentally friendly devices.

At the same time, with smaller memory chips and units it will be possible to develop more compact computers and smartphones, gaining in convenience and power.

According to the researchers, these can be smaller than currently used memory devices and boast more storage capacity.

"The scientific holy grail for scaling is going down to a level where a single atom controls the memory function, and this is what we accomplished in the new study," Akinwande said.

Akinwande's device falls under the category of memristors, a popular area of memory research, centered around electrical components with the ability to modify resistance between its two terminals without a need for a third terminal in the middle known as the gate. That means they can be smaller than today's memory devices and boast more storage capacity.

This version of the memristor -- developed using the advanced facilities at the Oak Ridge National Laboratory -- promises capacity of about 25 terabits per square centimeter. That is 100 times higher memory density per layer compared with commercially available flash memory devices.

They said the new memristor promises a capacity of about 25 terabits per square centimetre, which is about 100 times higher memory density per layer compared with commercially available flash memory devices.

 


Comments

Popular posts from this blog

Pegasus Spyware: Flying Through The Air

 Hundreds of millions of people can't imagine life without their smartphones. Almost every aspect of their daily lives, from the most mundane to the most intimate, is within easy reach and hearing distance of their smartphones. Only few people realize that their phones may be used as surveillance devices, with someone hundreds of miles away secretly extracting their messages, photographs, and location while also activating their microphone and recording them in real time. Such capabilities are present in Pegasus, a spyware produced by NSO Group, an Israeli maker of mass surveillance weapons. What is Pegasus? Pegasus is a hacking software – or spyware – that is developed, marketed and licensed to governments around the world by the Israeli company NSO Group. It has the capability to infect billions of phones using either iOS or Android operating systems. The spyware is named after Pegasus, the white winged horse from Greek mythology. It is named so because it "flies through the...

HOW TO SEE INCOGNITO HISTORY AND DELETE IT

We have heard about private or incognito browsing. It’s the mode that doesn’t store anything in history. While it does store cookies, but are deleted after the session is exited. This mode is known as Incognito browsing in Google Chrome, Private Browsing in Mozilla Firefox, and InPrivate Browsing in Internet Explorer. Whatever we may want to call it, the mode works the same in all browsers. However, sometimes we might want to go back to a page that you previously opened. The question is – can you check your incognito history? Problem is, there is no easy way to go back to that page. So all are search queries we saw is effectively lost. Unless you can Google it up and it shows again. But if it’s not there on the first page of Google, it’s gone forever. But we can still get to know about the websites that have been browsed under the incognito mode. Yes, the private browsing mode has a loophole. You can see the browsing history of someone using incognito mode but only if you h...

Difference Between Analysts and Statisticians

DIFFERENCE BETWEEN ANALYSTS AND STATISTICIANS In today’s digital landscape, data has become one of the biggest and most important assets for almost all organizations. Data can be fetched from anywhere and it’s actually transforming the way we live. Statistics and analytics are two branches of data science. Analysts specialize in exploring what’s in your data, statisticians focus more on inferring what’s beyond it. Let’s have a look at basic analytics? Try googling the weather. Whenever you use a search engine, you’re doing basic analytics. You’re pulling up weather data and looking at it. What expert analysts do? They’re all about taking a huge unexplored dataset and mining it for inspiration. Analysts are lightning-fast coders who can surf vast datasets quickly, they are data storytellers. Their mandate is to summarize interesting facts and to use data for inspiration. In some organizations those facts and that inspiration become input for human deci...