Skip to main content

Brain Machine Interfece

Brain-Computer Interface (BCI)  are devices that enable its users to interact with computers by mean of brain-activity only, this activity being generally measured by ElectroEncephaloGraphy (EEG).Electroencephalography (EEG) is a physiological method of choice to record the electrical activity generated by the brain via electrodes placed on the scalp surface.Functional magnetic resonance imaging (fMRI) measures brain activity by detecting changes associated with blood flow.
The reason a BCI works at all is because of the way our brains function. Our brains are filled with neurons, individual nerve cells connected to one another by dendrites and axons. Every time we think, move, feel or remember something, our neurons are at work. That work is carried out by small electric signals that zip from neuron to neuron as fast as 250 mph . The signals are generated by differences in electric potential carried by ions on the membrane of each neuron.Although the paths the signals take are insulated by something called myelin, some of the electric signal escapes. Scientists can detect those signals, interpret what they mean and use them to direct a device of some kind.


                    Image result for brain computer interface
                               

Electroencephalograph (EEG) is attached to the scalp. The electrodes can read brain signals. However, the skull blocks a lot of the electrical signal, and it distorts what does get through.To get a higher-resolution signal, scientists can implant electrodes directly into the gray matter of the brain itself, or on the surface of the brain, beneath the skull. This allows for much more direct reception of electric signals and allows electrode placement in the specific area of the brain where the appropriate signals are generated. Regardless of the location of the electrodes, the basic mechanism is the same: The electrodes measure minute differences in the voltage between neurons. The signal is then amplified and filtered. In current BCI systems, it is then interpreted by a computer program, although you might be familiar with older analogue encephalographs, which displayed the signals via pens that automatically wrote out the patterns on a continuous sheet of paper.
In the case of a sensory input BCI, the function happens in reverse. A computer converts a signal, such as one from a video camera, into the voltages necessary to trigger neurons. The signals are sent to an implant in the proper area of the brain, and if everything works correctly, the neurons fire and the subject receives a visual image corresponding to what the camera sees.

 Some of the applications of this technology may seem frivolous, such as the ability to control a video game by thought. If you think a remote control is convenient, imagine changing channels with your mind , devices that would allow severely disabled people to function independently or something as basic as controlling a computer cursor via mental commands

                              
                        Image result for brain computer interface

Comments

Popular posts from this blog

ROBOTIC PROCESS AUTOMATION

                             ROBOTIC PROCESS AUTOMATION: Robotic process automation (RPA), also known as software robotics, uses automation technology to simulate back-office functions performed by human employees, such as extracting data, filling out forms, moving files, etc. To integrate and carry out repetitive operations between enterprise and productivity applications, it mixes APIs and user interface (UI) interactions.   WORKING: RPA is not a physical robot but software running on physical and virtual machines. RPA is used when we have to handle repetitive tasks like sometimes, we fill in the same information at different places. It is operated by running a set of workflow tasks. It gives some instructions about what to do and how to do it at different stages of the workflow. Once the task is requested, the software runs and completes the whole task accordingly as many times as we want. If there is any incorrect data in bots, the software will send a request for correct

Unhackable Internet

  W hy it matters?   The internet is increasingly vulnerable to hacking; a quantum one would be unhackable. Quantum Computing    A quantum internet could be used to send unhackable messages, improve the accuracy of GPS, and enable cloud-based quantum computing. For more than twenty years, dreams of creating such a the quantum network have remained out of reach in large part because of the difficulty to send quantum signals across large distances without loss.   Now, Harvard and MIT researchers have found a way to correct for signal loss with a prototype quantum node that can catch, store and entangle bits of quantum information. The research is the missing link towards a practical quantum internet and a major step forward in the development of long-distance quantum networks.   The U.S Department of Energy (DoE) explains how a quantum link will make it happen through two quantum phenomenon: the first is quantum entanglement, where two-particle can become so inextricably li

Pegasus Spyware: Flying Through The Air

 Hundreds of millions of people can't imagine life without their smartphones. Almost every aspect of their daily lives, from the most mundane to the most intimate, is within easy reach and hearing distance of their smartphones. Only few people realize that their phones may be used as surveillance devices, with someone hundreds of miles away secretly extracting their messages, photographs, and location while also activating their microphone and recording them in real time. Such capabilities are present in Pegasus, a spyware produced by NSO Group, an Israeli maker of mass surveillance weapons. What is Pegasus? Pegasus is a hacking software – or spyware – that is developed, marketed and licensed to governments around the world by the Israeli company NSO Group. It has the capability to infect billions of phones using either iOS or Android operating systems. The spyware is named after Pegasus, the white winged horse from Greek mythology. It is named so because it "flies through the